|
|
Quality control and data evaluation of different models of groundbased microwave radiometers in Zhejiang area |
Wang Zhicheng1, Wang Wei2, Li Chenru3, Zhou Zizhong1, Wang Han1 |
1. Zhejiang Atmospheric Detection Technology Support Center,Hangzhou 310000; 2. Zhejiang Meteorological Service Center,Hangzhou 310000; 3. Ningbo Meteorological Network and Equipment Support Centre,Ningbo 315000 |
|
|
Abstract The article used observation data from seven ground-based microwave radiometers in Zhejiang Province in 2021 to conduct quality assessments using methods including logical discrimination,rate of change discrimination,precipitation discrimination,consistency discrimination,and climate threshold discrimination.The quality control results of each ground-based microwave radiometer were detailed,and the accuracy of brightness temperature data was evaluated.The results showed that the accuracy of the quality control methods for 7 devices was basically above 90%,and the proportion of all quality control methods passing logical checks was 82.10% to 91.12%.The correlation coefficient between the measured brightness temperature and the simulated brightness temperature of all tested equipment exceeded 0.85,reaching a significance level of 0.001.The oxygen channel was higher than the water vapor channel,and the non precipitation condition was higher than the precipitation condition.Under non precipitation conditions,the average deviation of oxygen channels for each ground-based microwave radiometer ranges from -0.59 K to 1.99 K,with a root mean square error of 1.35 K to 2.65 K,with the MWR-G microwave radiometer having the smallest error.The error of the water vapor channel is slightly higher than that of the oxygen channel.Under precipitation conditions,there is a significant deviation in the brightness temperature data of ground-based microwave radiometers.Therefore,caution should be exercised when using the observation data of ground-based microwave radiometers during precipitation.
|
Received: 27 February 2024
|
|
|
|
|
[1] |
郭丽君,郭学良.利用地基多通道微波辐射计遥感反演华北持续性大雾天气温、湿度廓线的检验研究[J].气象学报,2015,73(2):368-381.
|
[2] |
SURESH R C,RENJU R,ANTONY T,et al.Microwave radiometric observation of a waterspout over Coastal Arabian Sea[J].IEEE geoscience & remote sensing letters,2013,10(5):1075-1079.
|
[3] |
王小兰,王建凯,李炬.地基多通道微波辐射计反演大气温、湿廓线的试验研究[J].气象水文海洋仪器,2012,29 (4):1-6.
|
[4] |
WENG F,YANG H,ZOU X.On convertibility from antenna to sensor brightness temperature for ATMS[J].IEEE geoscience & remote sensing letters,2013,10(4):771-775.
|
[5] |
黄治勇,徐桂荣,王晓芳,等.地基微波辐射资料在短时暴雨潜势预报中的应用[J].应用气象学报,2013,24(5):576-584.
|
[6] |
王志诚,张雪芬,茆佳佳,等.地基遥感大气温湿风垂直廓线观测方法综述[J].气象水文海洋仪器,2018,35(2):109-116.
|
[7] |
王志诚,张东明,王聆勤,等.杭州地区地基微波辐射计反演水汽特征的比对分析[J].浙江气象,2021,42(3):34-39.
|
[8] |
张雪芬,王志诚,茆佳佳,等.微波辐射计温湿廓线反演方法改进试验[J].应用气象学报,2020,31(4):385-396.
|
[9] |
茆佳佳,张雪芬,王志诚,等.多型号地基微波辐射计亮温准确性比对[J].应用气象学报,2018,29(6):724-736.
|
[10] |
王志诚,张雪芬,茆佳佳,等.不同天气条件下地基微波辐射计探测性能比对[J].应用气象学报,2018,29(3):282-295.
|
[11] |
张天虎,鲍艳松,钱芝颖,等.基于BP神经网络与遗传算法反演大气温湿廓线[J].热带气象学报,2020,36(1):97-107.
|
[12] |
张鹏,咸迪,孙雪琪,等.冬奥赛场卫星和地基微波辐射计气温廓线观测对比和验证[J].气象科技,2022,50(4):485-493.
|
[13] |
王梧熠,董晓波,孙玉稳,等.邢台地区微波辐射计与无线电探空仪数据对比分析[J].气象科技,2022,50(3):344-354.
|
[14] |
李金辉,周毓荃,岳治国,等.基于微波辐射计数据的秦岭南北水汽和云底高度等参量的差异[J].气象,2022,48(4):452-458.
|
[15] |
王海军,刘莹.综合一致性质量控制方法及其在气温中的应用[J].应用气象学报,2012,23(1):69-76.
|
[16] |
廖捷,周自江.全球常规气象观测资料质量控制研究进展与展望[J].气象科技进展,2018,8(1):56-63.
|
[17] |
高祝宇,何妤斐,杨明.杭州飞机气象观测资料处理及质量分析[J].气象科技,2023,51(6):794-804.
|
[18] |
朱雅毓,王振会,楚艳丽,等.地基微波辐射计亮温观测数据的综合质量控制与效果分析[J].气象科学,2015,35(5):621-628.
|
|
|
|